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ABSTRACT

The eigenmode transformation technique is suitable for

the analysis of inhomogeneously filled shielded waveg-

uides containing metal inserts. The permittivit y oft he

filling medium may be an arbitrary function of the

transverse coordinates. The method is based on ex-

panding the electromagnetic field in terms of the eigen-

modes of the corresponding empty shielding waveguide.

The metal inserts have the effect of linearly transform-

ing these eigenmodes into those of the waveguide con-

taining the metal inserts only. This leads to a proper

matrix eigenvalue problem. The method is applied to

different types of planar transmission lines and the re-

sults are compared with other methods.

INTRODUCTION

We consider the inhomogeneously filled waveguide

shown in Fig. 1. The inhomogeneity is described by

a permittivity which may be an arbitrary function of

the transverse coordinates. Just one metal insert will

be considered here. The extension to more than one

metal insert is straightforward.

Although the method presented in [1] leads to a

proper matrix eigenvalue problem, to the authors’ best

knowledge it has not yet been applied to the actual

computation of eigenmodes. As has been shown in

[2], the set of TE- and TM-eigenmodes correspond-

ing to the empty shielding waveguide is complete if

no a-priori-coupling between the transversal and ax-

ial field components of these eigenmodes is assumed.

On the other hand, for the waveguides with metal in-

serts, additionally to the TE- and TM-eigenmodes one

ore more TEM-eigenmodes, corresponding to the num-

ber of metal inserts, have to be taken into account to

form a complete set. In this contribution we will fol-

low the analysis of [1] by expanding the field of the

inhomogeneously filled waveguide in terms of the eigen-

modes of the corresponding empty waveguide. The in-

fluence of metal insertls

a linear transformation

can however be described by

of the matrices which consti-

tute the eigenvalue problem corresponding to the in-

homogeneously filled waveguide without metal inserts.

This results in a new proper matrix eigenvalue prob-

lem. The computation of the transformation matrices

can be treated as a separate problem ([3], [4], [5]) what

leads to a modular character of the method.

THEORY

Refering to Fig. 1, the cross section (contour) of the

shielding waveguide and that of the metal insert are

denoted by S (C) and So (C’o), respectively. The unit

vector normal to both, C and C’., is denoted by n. The

permittivity c. is a function of the transverse coordi-

nates T. The direction of propagation, in which the

structure is uniform, is taken along the z-axis with a

corresponding propagation constant /3.

Let {’h!~n } and {C.~ } be the complete sets of axial

magnetic and axial electric fields characterizing the TE-

and TM-eigenmodes, respectively, corresponding to the

waveguide of Fig. 1 without dielectric. It can be easily

shown that the TEM-eigennmode (due to the metal

insert) is in fact a TM-eigenmode with vanishing cutoff

wavenumber. Therefore the TEM-eigenmode will be

formally included into the set of TM-eigenmodes for the

sake of simplicity. The axial fields ?4Zn land S.n are real

functions of the transverse coordinates and correspond 6B
to cut-off wavenumbers H: and R;, respectively. They

satisfy the orthogonality relations

/
Vt%zn Vt%.m dS = &m , (l-a)

s–s.

r Vtc$znvtl.m dS = ~nm , (l-b)
JS-SO

where C$nm is the Kronecker delta and Vt is the trans-

verse component of the del-operator. Note that 7Ln

and SXn are defined over S — So only.
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Let ~ be the unit vector in axial direction. The

sets {Vt S2n } and
{

Vt?tan x k
}

are complete with

respect to curl-free and divergence-free transverse

electric fields, respectively. The sets {Vt’Hzn } and

{ }
k x Vttzn have the same properties with respect to

the transverse magnetic field. Let Et, Ht, E=, and Hz

be the transverse electric, transverse magnetic, axial

electric, and axial magnetic field components, respec-

tively, then we can write

n n

n

(2-d)

n

where the z-dependence e–jP. has been dropped out

for all field components.

Let {hzn } and {eZn } denote the complete sets of

axial magnetic and axial electric fields characterizing

the TE- and TM-eigenmodes, respectively, which cor-

respond to the empty waveguide. For hzm and ezn

with corresponding cut-off wavenumbers k: and kg,
respectively, orthogonality relations corresponding to

(l-a) and (l-b) are valid. Inside a metal insert, the

electromagnetic field vanishes. Since ezn and hzm are

defined everywhere over S we can expand the fields

which are given by VtEzi, VtZzi, E2i, and %!Z% over

S – So and by zero over So with respect to Vt ezP,

( ( ))
Vth2P and & x Vte,p ,

[3].
ezp~and hzp, respectively

{

V~’H.i over S – So——
o over so

(3-a)

(3-b)

(3-c)

(3-d)

Let us denote the field given by the right-hand side

of (3-b) by ‘?+. Because the tangential component of

‘?& has a step discontinuity y at Co, (Vt x %!C) which

includes the normal derivative of the tangential com-

ponent behaves as a Dirac delta function there. This

Dirac delta function is just the axial component of

the surface current at Co. The vector (Vt x %!t ) can

then vanish everywhere over S except at Co, and hence

%!~ cannot be expanded in terms of the curl-free set

{Vth,P } only. It needs, in addition, the divergence-free

{ }
set k x Vtezp On the other hand, the functions de-

fined by the right-hand side of (3-a) can be expanded

in terms of the curl-free set {Vte Zp} because the tan-

gential component of this function is continuous across

co.

Substituting the field representations according to

(2-a) -(2-d) into Maxwell’s equations and making use of

the orthogonality properties according to (l-a)- (l-b),

one arrives at

where Z. denotes the intrinsic impedance of free space.

Quantities marked with a tilde (-) are normalized to

the free space wavenumber ,%0. The coupling integrals

R?j, R~j, ~j and Sij read

Substituting the series representations for Vt?tZi,

Vti2Zi and S.i according to (3-a) -(3-c) into (5-a) -(5-d),

the integrals can be extended over S. This is possi-

ble because the series are defined over the whole S and

vanish over So. In matrix notation, we get the coupling

matrices [7?~ ], [l?e], [T] and [S] with the elements 7Z~3,
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‘R~j, ‘Tij and Sij, respectively, as a linear transforma-

tion of the matrices [Rh], [R’], [T], and [S’1.

[R’] = [[j-=]’, [p]’]

[[%31 I!al(’-a)

[7?’]= [LPE] ‘ [Re] [IF] (6-b)

[1[7-1= [’?’LEE]* [m! [~ell ;:; (6-c)

[s] = [LP] ‘ [s] [Ld] (6-d)

The elements of [R~], [R’], [T], and [S] are given

by

/
R:j = E, - 1Vtez, . Vtezj dS , (7-b)

s

& = ! C.–l (Vtezi x Vth,j) .kdS , (7-c)
s

s,]
/

= k~k~ .S.-l eziezj dS . (7-d)
s

The matrices [Rh], [l?’], [T], and [S] characterize

the dielectric coupling of the eigenmodes of the empty

waveguide. Due to the metal insert, a linear transfor-

mation of these matrices has to be carried out. The

transformation matrices are [j’HH], [jEH], [illEE]

and [UL] with the elements JP~H, JP~H, U$E, and L/;.,

respectively, given by (3-a) –(3-c). Note that waveg-

uides which have the same dielectric substrate are de-

scribed by the same matrices [Rh], [R’], [T], and [S’1.

If all expansion coefficients in (4-a) -(4-f) except U,E

and Ut~ are eliminated, one arrives at a proper matrix

eigenvalue problem.

[ 10[1]- [k’]’ [R’] -[k’] 2[’Tj’ UH

[0] [1]- [7] [s] [k’] UE

()[
10

=j 2 [2”] [fl’ ~H

[Tl [’Ree] UE
(8)

The unit matrix and the zero matrix are denoted by [1]

and [0], respectively. The column vectors UH and UE
have the elements U: and Us, respectively. The eigen-

values are the normalized sqares of the propagation

constants. Since in (8) all matrix elements are real the

eigenvalues are either real or complex-conjugate pairs.

NUMERICAL RESULTS

The dispersion characteristics of the dominant and

higher order modes of various planar structures have

been investigated by the eigenmode transformation

technique.

Fig. 2 shows the cross sections of some shielded

transmission lines. Al I these transmission lines have

the same substrate. Therefore the same coupling ma-

trices (7-a) –(7-d) COUICI be used for all of them. The

transformation matrices [$HH], [YEfir], [UEE] and

[UL], however, had to be determined for each struc-

ture, separately. The transformation matrices of mi-

crostrip lines and coupled microstrip lines were com-

puted by the methods, presented in [3] wheras for the

computation of the transformation matrices of finlines

and coplanar lines the method presented in [5] has been

employed. Fig. 3 shows the dispersion characteristics

of the dominant modes in the planar transmission lines

shown in Fig. 2 in comparison with the results of Ya-

mashita and Atsuki ([6]). The agreement is good. Only

for high dielectric permittivities (c.=20) there are small

deviations. This can be explained by the fact that the

bandwidth of the coupling matrices (7-a) -(7-d) is large

for a high dielectric conkrast which degrade the conver-

gence of the infinite sums involved in the calculations.

Fig. 4 shows the electric field lines corresponding to a

TE-eigenmode of a shielded strip line as a linear combi-

nation of the housing eigenmodes. This field represen-

tation provides the data necessary for the ei.genmode

transformation. The corresponding modal spectrum

(two real eigenmodes forming a pair of complex modes

between 16 and 25 GH:z are shown in Fig. 5 agrees well

with that obtained in [7].

CONCLUSIONS

A proper matrix eigenvalue formulation for the analy-

sis of shielded wavegu ides cent aining a, dielectric and

met al inserts has been proposed. The metal inserts are

taken into account in form of linear transforamtions

for the coupling matrices corresponding to the dielec-

tric which makes the method modular. For shielded

dielectric waveguides, the numerical implementation of

the matrix eigenvalue problem has been compared to

other methods and the validity of the transformation

technique has been checked for different types of planar

transmission line.
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Fig. 1: Cross section of an inhomogeneously filled

shielded waveguide.
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Fig. 2: Various shielded planar transmission lines with

similar boundary conditions. Cross section of an

inhomogeneously filled shielded waveguide.
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Fig. 3:

Dispersion of the dominant modes of the structures,

shown in Fig. 2.

Parameters: a = 20mm, w=~=2m~, b=lOmm,

hl =4.5 mm, hz =lmm.
Presented method: —, -.., . . .. – –, – . –
Results of [6]: 0, A, +, x, o }

correspond to (a), (b), odd mode of (c), even mode of

(c), (d), respectively, in Fig. 2,

Fig. 4: Electric field of a TE mode corresponding to

shielded strip line,

15 20 25 30

f/GHz --+

a

Fig. 5: Modal spectrum of a shielded microstrip line.

Parameter: a = 10mm, w = lmm, b=5mm, h~ = 1 mm,

hl =0, Cr= lo.

—: presented method, o(+) calculated real (complex)

modes, - -: results of [7].
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