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ABSTRACT

The eigenmode transformation technique is suitable for
the analysis of inhomogeneously filled shielded waveg-
uides containing metal inserts. The permittivity of the
filling medium may be an arbitrary function of the
transverse coordinates, The method is based on ex-
panding the electromagnetic field in terms of the eigen-
modes of the corresponding empty shielding waveguide.
The metal inserts have the effect of linearly transform-
ing these eigenmodes into those of the waveguide con-
taining the metal inserts only. This leads to a proper
matrix eigenvalue problem. The method is applied to
different types of planar transmission lines and the re-
sults are compared with other methods.

INTRODUCTION

We consider the inhomogeneously filled waveguide
shown in Fig. 1. The inhomogeneity is described by
a permittivity which may be an arbitrary function of
the transverse coordinates. Just one metal insert will
be considered here. The extension to more than one
metal insert is straightforward.

Although the method presented in [1] leads to a
proper matrix eigenvalue problem, to the authors’ best
knowledge it has not yet been applied to the actual
computation of eigenmodes. As has been shown in
[2], the set of TE- and TM-eigenmodes correspond-
ing to the empty shielding waveguide is complete if
no a-priori-coupling between the transversal and ax-
ial field components of these eigenmodes is assumed.
On the other hand, for the waveguides with metal in-
serts, additionally to the TE- and TM-eigenmodes one
ore more TEM-eigenmodes, corresponding to the num-
ber of metal inserts, have to be taken into account to
form a complete set. In this contribution we will fol-
low the analysis of [1] by expanding the field of the
inhomogeneously filled waveguide in terms of the eigen-
modes of the corresponding empty waveguide. The in-
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fluence of metal inserts can however be described by
a linear transformation of the matrices which consti-
tute the eigenvalue problem corresponding to the in-
homogeneously filled waveguide without metal inserts.
This results in a new proper matrix eigenvalue prob-
lem. The computation of the transformation matrices
can be treated as a separate problem ([3], [4], [5]) what
leads to a modular character of the method.

THEORY

Refering to Fig. 1, the cross section (contour) of the
shielding waveguide and that of the metal insert are
denoted by S (C) and Sy (Cp), respectively. The unit
vector normal to both, C' and Cp, is denoted by n. The
permittivity ¢, is a function of the transverse coordi-
nates r. The direction of propagation, in which the
structure is uniform, is taken along the z-axis with a
corresponding propagation constant 3.

Let {H.n} and {&.,} be the complete sets of axial
magnetic and axial electric fields characterizing the TE-
and TM-eigenmodes, respectively, corresponding to the
waveguide of Fig. 1 without dielectric. It can be easily
shown that the TEM-eigennmode (due to the metal
insert) is in fact a TM-eigenmode with vanishing cutoff
wavenumber. Therefore the TEM-eigenmode will be
formally included into the set of TM-eigenmodes for the
sake of simplicity. The axial fields M., and &,,, are real
functions of the transverse coordinates and correspond
to cut-off wavenumbers k" and ¢, respectively. They
satisfy the orthogonality relations

Vit o ViHom s = Jnm ) (1_3‘)
o

5=5

/ V,Szthé’zmdS = é‘nm ) (l'b)
S~Sp

where d,,, 1s the Kronecker delta and V; is the trans-
verse component of the del-operator. Note that #.,
and &,, are defined over S — Sp only.
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Let k be the unjt vector in_axial direction. The
sets {V:&;,} and {V[Hzn X k:} are complete with
respect to curl-free and divergence-free transverse
electric fields, respectively. The sets {V;H,,} and
{l;: X Vt&m} have the same properties with respect to

the transverse magnetic field. Let E;, H;, E,, and H,
be the transverse electric, transverse magnetic, axial
electric, and axial magnetic field components, respec-
tively, then we can write

B, = iU,{I (me x k) + iUthSm (2-a)

H, = fjffvmm+§:ff (i;xvtgm) (2-b)
n n

GE = 3 Uk | (2-¢)
oo

H, = > IFehHn . (2-d)

where the z-dependence e™7#? has been dropped out
for all field components.

Let {h,,} and {e,n} denote the complete sets of
axial magnetic and axial electric fields characterizing
the TE- and TM-eigenmodes, respectively, which cor-
respond to the empty waveguide. For h,, and e,
with corresponding cut-off wavenumbers k" and k2,
respectively, orthogonality relations corresponding to
(1-a) and (1-b) are valid. Inside a metal insert, the
electromagnetic field vanishes. Since e,, and h,, are
defined everywhere over S we can expand the fields
which are given by V,&,;, ViH,;, &.;, and H,, over
S — So and by zero over Sy with respect to Ve,

(Vtth and (k X Vtezp)>, €:p, and h,,, respectively
[3].

= EE V&, over S-S,
Zupi Vies { 0 over So (3-2)
P
S TFE Vi, 4 3 TE (b x Ve, )
p P
ViHi over S—5;
{ 0 over  Sp (3-b)
= Lie k{E,; over S— 8y
Zp: upik”ez’) { 0 over So (3-c)
- kM., over S-S
Z jpl;kgth = { 0 over SO 0 (3'd)
P

Let us denote the field given by the right-hand side
of (3-b) by H;. Because the tangential component of
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H;: has a step discontinuity at Cy, (V: x H;) which
includes the normal derivative of the tangential com-
ponent behaves as a Dirac delta function there. This
Dirac delta function is just the axial component of
the surface current at Cy. The vector (V; x #;) can
then vanish everywhere over S except at Cj, and hence
H: cannot be expanded in terms of the curl-free set
{V;h.,} only. It needs, in addition, the divergence-free

set {l;: X Vtezp}. On the other hand, the functions de-

fined by the right-hand side of (3-a) can be expanded
in terms of the curl-free set {V,e,,} because the tan-
gential component of this function is continuous across
Co.

Substituting the field representations according to
(2-a)—(2-d) into Maxwell’s equations and making use of
the orthogonality properties according to (1-a)- (1-b),
one arrives at

= - " —320 ;1.

> TaUE+> RLUF = i (4)
P = —Lyr (4-b)
n k%Zo 9

R S - Z
;—ﬁZSmUHZRmUz%Zn,U,H - ?"15'. (4-c)

0 0 ZO u
7:7LUzE + RZerzH = T]n ’ (4_d)
2T :
Rrly +3BLY = LU¥ (4
Zo
5 _ 1 .F
BIf = LUP ()

where Z denotes the intrinsic impedance of free space.
Quantities marked with a tilde (7) are normalized to
the free space wavenumber kg. The coupling integrals

R R§;, Tij and S;; read

RZ = / fr_l Vi, Vt%z] ds ) (5_8‘)
S5—Sg

RZSJ et / Er—l Vtgzi N Vtgzj dsS ) (5_b)
S5—-5o

T, :/ &L (Vilai x Vi) - kdS | (5c)
S5-5,

t

Sy = KRS / & 66, dS . (5-d)
S—5g

Substituting the series representations for WV, H.;,
Vi&.i and &;; according to (3-a)—(3-c) into (5-a)—(5-d),
the integrals can be extended over S. This is possi-
ble because the series are defined over the whole S and
vanish over Sp. In matrix notation, we get the coupling

matrices [R”], [R?], [7] and [S] with the elements R”
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Rf;» Tij and S;j, respectively, as a linear transforma-

tion of the matrices [R?], [R°], [T], and [S].

®¥] = (g7, [754]" {[fﬂ” 53]] Hj ijﬂw-a)
(R = [u®]" (R [u®"] (6-b)
(1) = [w=F]" [im), (7)) Hj:” (6)
(8] = [u*]" (5] [u*] (6-d)

The elements of [R"], [R?], [T], and [S] are given
by

Rl = /5 & Vihy - Vih,, dS (7-a)
R = /3 & Vies, - ViesdS (7-b)
T = /Se,,-l (Veesi X Vihyj) -kdS (7-c)
Sy = Kk /5 6V eies; dS (7-d)

The matrices [R*], [R¢], [T], and [S] characterize
the dielectric coupling of the eigenmodes of the empty
waveguide. Due to the metal insert, a linear transfor-
mation of these matrices has to be carried out. The
transformation matrices are [JHH], [JEH], [UEE]
and [UL] with the elements JP?H, JP?H, UIEE, and L{If;,
respectively, given by (3-a)-(3-c). Note that waveg-
uides which have the same dielectric substrate are de-
scribed by the same matrices [R*], [R®], [T], and [S].

If all expansion coefficients in (4-a)—(4-f) except UF
and UF are eliminated, one arrives at a proper matrix
eigenvalue problem.

(N-[&*°[RA -[&*)°17) | (U™
O [W-EFESIE]) \U”
e | mey o] (o
o (ﬂ) [7‘] [Ree]_ UE (8)

The unit matrix and the zero matrix are denoted by (/]
and [0], respectively. The column vectors U¥ and UF
have the elements U and UZ | respectively. The eigen-
values are the normalized sqares of the propagation
constants. Since in (8) all matrix elements are real the
eigenvalues are either real or complex-conjugate pairs.
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NUMERICAL RESULTS

The dispersion characteristics of the dominant and
higher order modes of various planar structures have
been investigated by the eigenmode transformation
technique.

Fig. 2 shows the cross sections of some shielded
transmission lines. All these transmission lines have
the same substrate. Therefore the same coupling ma-
trices (7-a)—(7-d) could be used for all of them. The
transformation matrices [j HH ], [j EH], [UEE] and
[UL ], however, had to be determined for each struc-
ture, seperately. The transformation matrices of mi-
crostrip lines and coupled microstrip lines were com-
puted by the methods, presented in [3] wheras for the
computation of the transformation matrices of finlines
and coplanar lines the method presented in [5] has been
employed. Fig. 3 shows the dispersion characteristics
of the dominant modes in the planar transmission lines
shown in Fig. 2 in comparison with the results of Ya-
mashita and Atsuki ([6]). The agreement is good. Only
for high dielectric permittivities (¢,=20) there are small
deviations. This can be explained by the fact that the
bandwidth of the coupling matrices (7-a)—(7-d) is large
for a high dielectric contrast which degrade the conver-
gence of the infinite sums involved in the calculations.
Fig. 4 shows the electric field lines corresponding to a
TE-eigenmode of a shielded strip line as a linear combi-
nation of the housing eigenmodes. This field represen-
tation provides the data necessary for the eigenmode
transformation. The corresponding modal spectrum
(two real eigenmodes forming a pair of complex modes
between 16 and 25 GHz are shown in Fig. 5 agrees well
with that obtained in [7].

CONCLUSIONS

A proper matrix eigenvalue formulation for the analy-
sis of shielded waveguides containing s dielectric and
metal inserts has been proposed. The metal inserts are
taken into account in form of linear transforamtions
for the coupling matrices corresponding to the dielec-
tric which makes the method modular. For shielded
dielectric waveguides, the numerical implementation of
the matrix eigenvalue problem has been compared to
other methods and the validity of the transformation
technique has been checked for different types of planar
transmission line.
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Fig. 1: Cross section of an inhomogeneously filled
shielded waveguide.
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Fig. 2: Various shielded planar transmission lines with
similar boundary conditions. Cross section of an
inhomogeneously filled shielded waveguide.
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Fig. 3:

Dispersion of the dominant modes of the structures,
shown in Fig. 2.
Parameters: a=20mm, w=d=2mm, b=10mm,
h1 =4.5 mi, h2 =1mm.

Presented method: —, ---, ..., ——  —._— }

Results of [6]: o, A, +, X, o
correspond to (a), (b), odd mode of (c), even mode of
{(c), (d), respectively, in Fig. 2.

Fig. 4: Electric field of a TE mode corresponding to a
shielded strip line.
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Fig. 5: Modal spectrum of a shielded microstrip line.
Parameter: a=10mm, w=1mm, b=5mm, hs =1 mm,

hi =0, e, =10.
— presented method, o(+) calculated real {complex)
modes, - -: results of [7].



